Gretel Client

Gretel.ai

Apr 02, 2024

CONTENTS:

1 Getting Started 3
2 System Requirements S
3 Client SDKs 7
4 Modules 9
4.1 Gretel CLL o e e e e e e 9
4.2 High-level SDK Interface 9
4.3 Projects SDK e 16
4.4 ClientConfig o . vt e e e e e e e e e e e e 29
4.5 Quality Report o e e e e e e e e e e 32
4.6 Helpers o e e e e e 33
5 Indices and tables 35
Python Module Index 37
Index 39

Gretel Client

oretel

CONTENTS: 1

https://github.com/gretelai/gretel-python-client/actions/workflows/tests.yml
https://gretel-client.readthedocs.io/en/stable/?badge=stable?badge=stable
https://github.com/gretelai/gretel-python-client/blob/main/LICENSE
https://badge.fury.io/py/gretel-client
https://github.com/gretelai/gretel-python-client
https://pepy.tech/project/gretel-client
https://gretel.ai/discord
https://github.com/gretelai/gretel-python-client

Gretel Client

2 CONTENTS:

CHAPTER
ONE

GETTING STARTED

The following command will install the latest stable Gretel CLI and Python SDK

[pip install gretel-client

To install the latest development version, you may run

[pip install git+https://github.com/gretelai/gretel-python-client@main

To configure the CLI, run

[gretel configure

Gretel Client

4 Chapter 1. Getting Started

CHAPTER
TWO

SYSTEM REQUIREMENTS

The Gretel CLI and python SDKs require Python version 3.9 or greater. Docker is required for local training and
generation jobs.

For more information please refer to the Gretel Environment Setup docs.

https://docs.gretel.ai/environment-setup

Gretel Client

6 Chapter 2. System Requirements

CHAPTER
THREE

CLIENT SDKS

The gretel-client package also ships with a set of Python Client SDKs that may be used to interact with Gretel
APIs using a familiar pythonic interface. For more information on how to use these SDKs, please refer to the following
links

* Projects SDK Reference

https://python.docs.gretel.ai/en/latest/projects/index.html

Gretel Client

8 Chapter 3. Client SDKs

CHAPTER
FOUR

MODULES

4.1 Gretel CLI

The gretel-client package will automatically install the Gretel CLI. To ensure the CLI was installed correctly, you
may run the following command from your terminal

[gretel --help

For more information how to setup your CLI environment, see Environment Setup.

You may also refer to the CLI Tutorial docs for a list of guides detailing how to use the CLIL

4.2 High-level SDK Interface

The SDK'’s high-level interface is centered around the Gretel object, which serves as the main entry point for inter-
acting with Gretel’s APIs, models, and artifacts:

from gretel_client import Gretel

connect to your Gretel account
gretel = Gretel(api_key="prompt")

train a deep generative model from scratch and update the config via kwargs
trained = gretel.submit_train(
base_config="tabular-actgan",
data_source="https://gretel-public-website.s3-us-west-2.amazonaws.com/datasets/
—USAdultIncome5k.csv",
params={"epochs": 500},
)

view synthetic data quality scores
print(trained.report)

display the full report in your browser
trained.report.display_in_browser()

fetch and inspect the synthetic data used in the report
df_report_synth = trained.fetch_report_synthetic_data()
print (df_report_synth.head())

(continues on next page)

https://docs.gretel.ai/environment-setup
https://docs.gretel.ai/examples/redact-pii

Gretel Client

generate synthetic data from a trained model
generated = gretel.submit_generate(trained.model_id, num_records=1000)

inspect the synthetic data
print(generated.synthetic_data.head())

(continued from previous page)

Module Reference

4.2.1 Interface

class gretel_client.gretel.interface.Gretel(*, project_name: str | None = None,
project_display_name: str | None = None, session:
ClientConfig | None = None, **session_kwargs)

High-level interface for interacting with Gretel’s APIs.

To bound an instance of this class to a Gretel project, provide a project name at instantiation or use the set_project
method. If a job is submitted (via a submit_* method) without a project set, a randomly-named project will be

created and set as the current project.

Parameters

* project_name (str) — Name of new or existing project. If a new project name is given,
it will be created at instantiation. If no name given, a new randomly-named project will be

created with the first job submission.

* project_display_name (str) — Project display name. If None, will use the project name.

This argument is only used when creating a new project.

» session (ClientConfig) — Client session to use. If set, no session_kwargs may be

specified.

» **session_kwargs — kwargs for your Gretel session. See options below.

Keyword Arguments

* api_key (str) — Your Gretel API key. If set to “prompt” and no API key is found on the

system, you will be prompted for the key.

* endpoint (str) — Specifies the Gretel API endpoint. This must be a fully qualified URL.

The default is “https://api.gretel.cloud”.

* default_runner (str) — Specifies the runner mode. Must be one of “cloud”, “local”,

“manual”, or “hybrid”. The default is “cloud”.

e artifact_endpoint (str) — Specifies the endpoint for project and model artifacts. De-
faults to “cloud” for running in Gretel Cloud. If working in hybrid mode, set to the URL of

your artifact storage bucket.

* cache (str) — Valid options are “yes” or “no”. If set to “no”, the session configuration will
not be written to disk. If set to “yes”, the session configuration will be written to disk only

if one doesn’t already exist. The default is “no”.

» validate (bool) — If True, will validate the login credentials at instantiation. The default

is False.

* clear (bool) — If True, existing Gretel credentials will be removed. The default is False.

10

Chapter 4. Modules

https://api.gretel.cloud

Gretel Client

fetch_generate_job_results (model_id: str, record_id: str) — GenerateJobResults

Fetch the results object from a Gretel generate job.
Parameters
* model_id — The Gretel model ID.
e record_id — The Gretel record handler ID.

Raises
GretelProjectNotSetError — If a project has not been set.

Returns
Job results including the model object, record handler, and synthetic data.

fetch_model (model_id: str) — Model
Fetch a Gretel model using its ID.

You must set a project before calling this method.

Parameters
model_id — The Gretel model ID.

Raises
GretelProjectNotSetError — If a project has not been set.

Returns
The Gretel model object.

fetch_train_job_results(model_id: str) — TrainJobResults

Fetch the results object from a Gretel training job.
You must set a project before calling this method.

Parameters
model_id — The Gretel model ID.

Raises
GretelProjectNotSetError — If a project has not been set.

Returns
Job results including the model object, report, logs, and final config.

get_project (**kwargs) — Project
Returns the current Gretel project.

If a project has not been set, a new one will be created. The optional kwargs are the same as those available
for the set_project method.

run_tuner (tuner_config: str| Path | dict, *, data_source: str | Path | _DataFrameT, n_trials: int = 5, n_jobs:
int = 1, use_temporary_project: bool = False, verbose_logging: bool = False,
**non_default_config_settings)

Run a hyperparameter tuning experiment with Gretel Tuner.
Parameters
¢ tuner_config - The config as a yaml file path, yaml string, or dict.
» data_source — Training data source as a file path or pandas DataFrame.
e n_trials — Number of trials to run.

* n_jobs — Number of parallel jobs to run locally. Note each job will spin up a Gretel worker.

4.2,

High-level SDK Interface 11

Gretel Client

* use_temporary_project — If True, will create a temporary project for the tuning exper-
iment. The project will be deleted when the experiment is complete. If False, will use the

current project.

* verbose_logging — If True, will print all logs from submitted Gretel jobs.

« **non_default_config_settings — Config settings to override in the given tuner con-
fig. The kwargs must follow the same nesting format as the yaml config file. See example

below.

Raises

ImportError — If the Gretel Tuner is not installed.

Returns

Tuner results dataclass with the best config, best model id, study object, and trial data as

attributes.

Example:

from gretel_client import Gretel
gretel = Gretel(api_key="prompt")
yaml_config_string = "'’
base_config: "tabular-actgan"
metric: synthetic_data_quality_score
params:
epochs:
fixed: 50
batch_size:
choices:
privacy_filters:
similarity:
choices:

[500, 1000]

["medium", "high"]

—USAdultIncome5k.csv"

results = gretel.run_tuner(
tuner_config=yaml_config_string,
data_source=data_source,
n_trials=2,
params={
"batch_size": {"choices":
"generator_lr": {"log_range":

b
)
print(£"Best config:

generate data with best model

(50,

privacy_filters={"similarity": {"choices":

data_source="https://gretel-public-website.s3-us-west-2.amazonaws.com/datasets/

100]},
[0.001, 0.01]}

[None, "medium", "high"]}},

results.best_config}")

generated = gretel.submit_generate(results.best_model_id, num_records=100)

set_project(name: str | None = None, desc: str | None = None, display_name: str | None = None)

Set the current Gretel project.

12

Chapter 4. Modules

Gretel Client

If a project with the given name does not exist, it will be created. If the name is not unique, the user id will
be appended to the name.

Parameters
* name — Name of new or existing project. If None, will create one.
* desc — Project description.
¢ display_name — Project display name. If None, will use project name.

Raises
ApiException — If an error occurs while creating the project.

submit_generate (model_id: str, *, num_records: int | None = None, seed_data: str| Path | _DataFrameT |
None = None, wait: bool = True, fetch_data: bool = True, verbose_logging: bool = False,
**generate_kwargs) — GenerateJobResults

Submit a Gretel model generate job.

Only one of num_records or seed_data can be provided. The former will generate a complete synthetic
dataset, while the latter will conditionally generate synthetic data based on the seed data.

Parameters
e model_id — The Gretel model ID.
¢ num_records — Number of records to generate.
» seed_data — Seed data source as a file path or pandas DataFrame.
e wait — If True, wait for the job to complete before returning.
o fetch_data - If True, fetch the synthetic data as a DataFrame.
¢ verbose_logging — If True, will print all logs from the job.

Raises
GretelJobSubmissionError — If the combination of arguments is invalid.

Returns
Job results including the model object, record handler, and synthetic data.

Examples:

Generate a synthetic dataset with 1000 records.

from gretel_client import Gretel

gretel = Gretel(project_name="my-project")

generated = gretel.submit_generate(model_id, num_records=100)

Conditionally generate synthetic examples of a rare class.

import pandas pd

from gretel_client import Gretel

gretel = Gretel(project_name="my-project")

df_seed = pd.DataFrame(["rare_class"] * 1000, columns=["field_name"])
generated = gretel.submit_generate(model_id, seed_data=df_seed)

submit_train(base_config: str| Path | dict, *, data_source: str| Path | _DataFrameT | None, job_label: str |
None = None, wait: bool = True, verbose_logging: bool = False,
**non_default_config_settings) — TrainJobResults

Submit a Gretel model training job.

4.2,

High-level SDK Interface 13

Gretel Client

Training jobs are configured by updating a base config, which can be given as a dict, yaml file path, yaml
string, or as the name of one of the Gretel base config files (without the extension) listed here: https:
//github.com/gretelai/gretel-blueprints/tree/main/config_templates/gretel/synthetics

Parameters
* base_config — Base config name, yaml file path, yaml string, or dict.
¢ data_source - Training data source as a file path or pandas DataFrame.
¢ job_label — Descriptive label to append to job the name.
e wait - If True, wait for the job to complete before returning.
» verbose_logging — If True, will print all logs from the job.

« **non_default_config_settings — Config settings to override in the template. The
format is section={ “setting”: “value” }, where section is the name of a yaml section within
the specific model settings, e.g. params or privacy_filters. If the parameter is not nested
within a section, pass it directly as a keyword argument.

Returns
Job results including the model object, report, logs, and final config.

Example:

from gretel_client import Gretel

data_source="https://gretel-public-website.s3-us-west-2.amazonaws.com/datasets/
—USAdultIncome5k.csv"

gretel = Gretel(project_name="my-project")
trained = gretel.submit_train(
base_config="tabular-actgan",
data_source=data_source,
params={"epochs": 100, "generator_dim": [128, 128]},
privacy_filters={"similarity": "high", "outliers": None},

4.2.2 Job Results

class gretel_client.gretel.job_results.GeneratelJobResults (project: Project, model: Model,
record_handler: RecordHandler,
synthetic_data_link: str | None = None,
synthetic_data: _DataFrameT | None =
None)

Dataclass for the results from a Gretel data generation job.

refresh()
Refresh the generate job results attributes.

wait_for_completion()
Wait for the model to finish generating data.

class gretel_client.gretel. job_results.GretelJobResults(project: Project, model: Model)
Base class for Gretel jobs.

14 Chapter 4. Modules

https://github.com/gretelai/gretel-blueprints/tree/main/config_templates/gretel/synthetics
https://github.com/gretelai/gretel-blueprints/tree/main/config_templates/gretel/synthetics

Gretel Client

class gretel_client.gretel.job_results.TrainJobResults (project: Project, model: Model,
model_config: dict | None = None, report:
GretelReport | None = None, model_logs:
List[dict] | None = None)

Dataclass for the results from a Gretel model training job.

fetch_report_synthetic_data() — _DataFrameT

Fetch synthetic data generated for the report and return as a DataFrame.
Note: This method requires the pandas package to be installed.

refresh()
Refresh the training job results attributes.

wait_for_completion()
Wait for the model to finish training.

4.2.3 Artifact Fetching

class gretel_client.gretel.artifact_fetching.GretelReport (as_dict: dict, as_html: str)
Dataclass for a Gretel synthetic data quality report.

display_in_browser()
Display the HTML report in a browser.

display_in_notebook()
Display the HTML report in a notebook.

save_html (save_path: str | Path)
Save the HTML report to a file at the given path.

class gretel_client.gretel.artifact_fetching.ReportType (value)
The kind of report to fetch.

gretel_client.gretel.artifact_fetching.fetch_final_model_config(model: Model) — dict

Fetch the final model configuration from a model training job.

Parameters
model — The Gretel model object.

Returns
The final training configuration as a dict.

gretel_client.gretel.artifact_fetching.fetch_model_logs (model: Model) — List[dict]

Fetch the logs from training a Gretel model.

Parameters
model — The Gretel model object.

Returns
A list of log messages.

gretel_client.gretel.artifact_fetching.fetch_model_report (model: Model, report_type: ReportType
= ReportType.SQS) — GretelReport

Fetch the quality report from a model training job.
Parameters

» model — The Gretel model object.

4.2. High-level SDK Interface 15

Gretel Client

» report_type — The type of report to fetch. One of “sqs” or “text”.

Returns
The Gretel report object.

gretel_client.gretel.artifact_fetching.fetch_synthetic_data(record_handler: RecordHandler) —
_DataFrameT

Fetch synthetic data from a model generate job.
This function requires the pandas package to be installed.

Parameters
record_handler — A RecordHandler object from the model.

Raises
ImportError — If the pandas package is not installed.

Returns
A pandas DataFrame containing the synthetic data.

4.3 Projects SDK

You may use the Projects SDK to programmatically interact with Gretel APIs using a familiar python interface.

The example below ties together a number of concepts to train a synthetic model and then generate data from the model.

import pandas as pd
from gretel_client import create_project, poll
project = create_project()

create a synthetic model using a default synthetic config from
https://github.com/gretelai/gretel-blueprints/blob/main/config_templates/gretel/
—synthetics/default.yml
#
Providing a data_source will override the datasource from the template. If the data.
< source is a local
file, then it will automatically be uploaded to Gretel Cloud as part of the.
—>submission step
model = project.create_model_obj(
model_config="synthetics/default",
data_source="https://gretel-public-website.s3.us-west-2.amazonaws.com/datasets/
—USAdultIncome5k.csv",
)

submit the model to Gretel Cloud for training
model . submit ()

wait for the model to training
poll (model)

read out a preview data from the synthetic model
pd.read_csv(model.get_artifact_link("data_preview"), compression="gzip")

Module Reference

16 Chapter 4. Modules

Gretel Client

4.3.1 Projects

High level API for interacting with a Gretel Project

class gretel_client.projects.projects.Project(*, name: str, project_id: str, project_guid: str | None =
None, desc: str | None = None, display_name: str | None
= None, runner_mode: str | RunnerMode | None =
None, session: ClientConfig | None = None,
cluster_guid: str | None = None)

Represents a Gretel project. In general you should not init this class directly, but always make use of the factory
methods get_project, create_project, get_or_create_project etc.

Parameters
* name — The unique name of the project. This is either set by you or auto managed by Gretel

e project_id — The unique project id of your project. This is managed by gretel and never
changes.

* desc — A short description of the project
» display_name — The main display name used in the Gretel Console for your project
» session — The client session to use for API interactions, or None to use the default session.
property artifacts: List[dict]
Returns a list of project artifacts.
property as_dict: dict
Returns a dictionary representation of the project.

create_model_obj (model_config: str | Path | dict, data_source: str| _DataFrameT | None = None,
ref_data: str| Dict[str, str] | List[str] | Tuple[str] | _DataFrameT | List[_DataFrameT] |
None = None) — Model

Creates a new model object. This will not submit the model to Gretel’s cloud API. Please refer to the Model
docs for more information detailing how to submit the model.

Parameters

¢ model_config — Specifies a model config. For more information about model configs,
please refer to our doc site, https://docs.gretel.ai/reference/model-configurations.

e data_source — Defines the model data_source. If the model_config already has a
data_source defined, this property will override the existing one.

¢ ref_data - An Optional str, dict, dataframe or list of reference data sources to upload for
the job.

delete(*args, **kwargs)

Deletes a project. After the project has been deleted, functions relying on a project will fail with a
GretelProjectError exception.

Note: Deleting projects is asynchronous. It may take a few seconds for the project to be deleted by Gretel
services.

delete_artifact (key: str)

Deletes a project artifact.

Parameters
key — Artifact key to delete.

4.3. Projects SDK 17

https://docs.gretel.ai/reference/model-configurations

Gretel Client

get_artifact_handle (key: str) — BinarylO

Returns a reference to a remote artifact that can be used to read binary data within a context manager

>>> with job.get_artifact_handle("report_json") as file:
print(file.read())

Parameters
key — Artifact key to download.

Returns
a file like object

get_artifact_link(key: str) — str

Returns a link to download a project artifact.

Parameters
key — Project artifact key to generate download url for.

Returns
A signed URL that may be used to download the given project artifact.

get_console_url() — str
Returns web link to access the project from Gretel’s console.

get_model (model_id: str) — Model
Lookup and return a Project Model by it’s model_id.

Parameters
model_id — The model_id to lookup

info() — dict
Return details about the project.

search_models (factory: ~typing. Type[~gretel_client.projects.projects. MT] = <class
"gretel_client.projects.models.Model'>, limit: int = 100, model_name: str=") —
Iterator[MT]

Search for project models.
Parameters

» factory — Determines what type of Model representation is returned. If Model is passed,
aModel will be returned. If dict is passed, a dictionary representation of the search results
will be returned.

e limit — Limits the number of project models to return
* model_name — Name of the model to try and match on (partial match)

upload_artifact (artifact_path: Path | str| _DataFrameT, _validate: bool = True, _artifacts_handler:
ArtifactsHandler | None = None) — str

Resolves and uploads the data source specified in the model config.

Returns
A Gretel artifact key.

gretel_client.projects.projects.create_or_get_unique_project(*, name: str,desc: str | None =
None, display_name: str | None =
None, session: ClientConfig | None
= None) — Project

18 Chapter 4. Modules

Gretel Client

Helper function that provides a consistent experience for creating and fetching a project with the same name.
Given a name of a project, this helper will fetch the current user’s ID and use that as a suffix in order to create
a project name unique to that user. Once the project is created, if it can be fetched, it will not be re-created over
and over again.

Parameters
* name — The name of the project, which will have the User’s ID appended to it automatically.
* desc — Description of the project.

» display_name — If None, the display name will be set equal to the value of name _before_
the user ID is appended.

* session — The client session to use, or None to use the default client session.

Note: The desc and display_name parameters will only be used when the project is first created. If the project
already exists, these params will have no affect.

gretel_client.projects.projects.create_project(* name: str | None = None, desc: str | None = None,
display_name: str | None = None, session:
ClientConfig | None = None, runner_mode: str |
RunnerMode | None = None,
hybrid_environment_guid: str | None = None) —
Project

Excplit project creation. This function will simply call the API endpoint and will raise any HTTP exceptions
upstream.

gretel_client.projects.projects.get_project(* name: str | None = None, create: bool = False, desc: str
| None = None, display_name: str | None = None,
runner_mode: str | RunnerMode | None = None, session:
ClientConfig | None = None) — Project

Used to get or create a Gretel project.
Parameters
* name — The unique name of the project. This is either set by you or auto managed by Gretel.
» create — If create is set to True the function will create the project if it doesn’t exist.

» project_id — The unique project id of your project. This is managed by gretel and never
changes.

* desc — A short description of the project
» display_name — The main display name used in the Gretel Console for your project
* session — the client session to use, or None to use the default session.

Returns
A project instance.

gretel_client.projects.projects.search_projects(limit: int = 200, query: str | None = None, *, session:
ClientConfig | None = None) — List[Project]

Searches for project.
Parameters

e limit — The max number of projects to return.

4.3. Projects SDK 19

Gretel Client

* query — String filter applied to project names.
» session — Can be used to override local Gretel config.

Returns
A list of projects.

gretel_client.projects.projects.tmp_project(*, session: ClientConfig | None = None)

A temporary project context manager. Create a new project that can be used inside of a “with” statement for
temporary purposes. The project will be deleted from Gretel Cloud when the scope is exited.

Parameters
session — the client session to use, or None to use the default session.

Example:

with tmp_project() as proj:
model = proj.create_model _obj()

4.3.2 Models

Classes and methods for working with Gretel Models

class gretel_client.projects.models.Model (project: None, model_config: str| Path | dict | None = None,
model_id: str | None = None)

Represents a Gretel Model. This class can be used to train new models or run and lookup existing ones.
property artifact_types: List[str]
Returns a list of artifact types associated with the model.
property billing_details: dict
Get billing details for the current job.
cancel
Cancels the active job.
property container_image: str
Return the container image for the job.

create_record_handler_obj (data_source: str | _DataFrameT | None = None, params: dict | None =
None, ref _data: str| Dict[str, str] | List[str] | Tuple[str] | _DataFrameT |
List[_DataFrameT] | None = None) — RecordHandler

Creates a new record handler for the model.
Parameters
* data_source — A data source to upload to the record handler.

e params — Any custom params for the record handler. These params are specific to the
upstream model.

property data_source: str | _DataFrameT | None

Retrieves the configured data source from the model config.

If the model config has a local data_source we’ll try and resolve that path relative to the location of the
model config.

delete() — dict | None
Deletes the remote model.

20 Chapter 4. Modules

Gretel Client

download_artifacts(target_dir: str| Path)
Given a target directory, either as a string or a Path object, attempt to enumerate and download all artifacts
associated with this Job

Parameters
target_dir — The target directory to store artifacts in. If the directory does not exist, it will
be created for you.
property errors

Return any errors associated with the model.

property external_data_source: bool
Returns True if the data source is external to Gretel Cloud. If the data source is a Gretel Artifact, returns
False.

property external_ref_data: bool

Returns True if the data refs are external to Gretel Cloud. If the data refs are Gretel Artifacts, returns
False.

get_artifact_handle(artifact_key: str) — BinarylO

Returns a reference to a remote artifact that can be used to read binary data within a context manager

>>> with job.get_artifact_handle("report_json") as file:
print(file.read())

Parameters
artifact_key — Artifact type to download.

Returns
a file like object

get_artifact_link(artifact_key: str) — str
Retrieves a signed S3 link that will download the specified artifact type.

Parameters
artifact_key — Artifact type to download.

get_artifacts() — Iterator[Tuple[str, str]]
List artifact links for all known artifact types.
get_artifacts_by_artifact_types(artifact_types: List[str]) — Iterator[Tuple[str, str]]
List artifact links for all known artifact types.
get_record_handlers() — Iterator[RecordHandler]
Returns a list of record handlers associated with the model.
get_report_summary (report_path: str | None = None) — dict | None
Return a summary of the job results :param report_path: If a report_path is passed, that report

will be used for the summary. If no report path is passed, the function will check for a cloud report
artifact.

property instance_type: str
Returns CPU or GPU based on the model being trained.

property is_cloud_model
Returns True if the model was created to run in Gretel’s Cloud. False otherwise.

4.3. Projects SDK 21

Gretel Client

property logs
Returns run logs for the job.
property model_config: dict
Returns the model config used to create the model.
property model_type: str
Returns the type of model. Eg synthetics, transforms or classify.
property name: str | None

Gets the name of the model. If no name is specified, a random name will be selected when the model is
submitted to the backend.

Getter
Returns the model name.

Setter
Sets the model name.

peek_report (report_path: str | None = None) — dict | None
Return a summary of the job results.
Parameters

report_path — If a report_path is passed, that report will be used for the summary. If no
report path is passed, the function will check for a cloud based artifact.

poll_logs_status (wait: int = -1, callback: Callable | None = None) — Iterator[LogStatus]
Returns an iterator that may be used to tail the logs of a running Model.

Parameters

e wait — The time in seconds to wait before closing the iterator. If wait is -1
(WAIT_UNTIL_DONE), the iterator will run until the model has reached a “completed”
or “error” state.

* callback — This function will be executed on every polling loop. A callback is useful for
checking some external state that is working on a Job.

property print_obj: dict

Returns a printable object representation of the job.
project: Project

Project associated with the job.
property ref_data: RefData

Retrieves configured ref data from the model config. If there are local ref data sources we will try and
resolve that path relative to the location of the model config.

refresh()

Update internal state of the job by making an API call to Gretel Cloud.
property runner_mode: str

Returns the runner_mode of the job. May be one of hybrid, manual or cloud.

property status: Status

The status of the job. Is one of gretel_client.projects.jobs.Status.

22

Chapter 4. Modules

Gretel Client

submit (runner_mode: str | RunnerMode | None = None, dry_run: bool = False) — Job
Submit this Job to the Gretel Cloud API.

Parameters

e runner_mode — Determines where to run the model. If not specified, the runner mode of
the project (if configured) is used, otherwise the default runner mode of the session is used.

e dry_run - If set to True the model config will be submitted for validation, but won’t be
run. Ignored for record handlers.

submit_cloud(dry_run: bool = False) — Job
Submit this Job to the Gretel Cloud API be scheduled for running in Gretel Cloud.

Returns
The response from the Gretel API.

submit_hybrid(dry_run: bool = False) — Job
Submit this Job to the Gretel Cloud API to be scheduled for running in a hybrid deployment.

Returns
The response from the Gretel API.

submit_local (dry_run: bool = False) — Job
Submit this Job to the Gretel Cloud API to be scheduled for running in a local container.

Returns
The response from the Gretel API.

submit_manual (dry_run: bool = False) — Job

Submit this Job to the Gretel Cloud API, which will create the job metadata but no runner will be started.
The Model instance can now be passed into a dedicated runner.

Returns
The response from the Gretel API.

property traceback: str | None
Returns the traceback associated with any job errors.

upload_data_source (_validate: bool = True, _artifacts_handler: CloudArtifactsHandler |
HybridArtifactsHandler | None = None) — str | None

Resolves and uploads the data source specified in the model config.
If the data source is already a Gretel artifact, the artifact will not be uploaded.

Returns
A Gretel artifact key.

upload_ref_data(_validate: bool = True, _artifacts_handler: ArtifactsHandler | None = None) — RefData

Resolves and uploads ref data sources specificed in the model config.
If the ref data are already Gretel artifacts, we’ll return the ref data as-is.

Returns
A RefData instance that contains the new Gretel artifact values.

validate_data_source()

Tests that the attached data source is a valid CSV or JSON file. If the data source is a Gretel cloud artifact
OR a hybrid artifact and the runner mode is hybrid, data validation will be skipped.

Raises

4.3.

Projects SDK 23

Gretel Client

» DataSourceError — file can’t be opened.
e DataValidationError — the data isn’t valid CSV or JSON.

worker_key: str | None
Worker key used to launch the job.
gretel_client.projects.models.read_model_config(model_config: str| Path | dict, *, base_url: str =

'hitps://raw.githubusercontent.com/gretelai/gretel-
blueprints/main/config_templates/gretel’) — dict

Load a Gretel configuration into a dictionary.
Parameters

» model_config — This argument may be a string to a file on disk or a Gretel configuration
template string such as “synthetics/default”. First, this function will treat string input as
a location o